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condition of P→0. Around 1997, while debating with James J. Robinson, 
A. G. Guy [3,4] derived U = 3/2 PV [5], which illustrated that the 
internal energy U is the composite function of both P and V instead 
of only T. In 1997, Yan and Gao [6] also did further free expansion 
studies in this regard resulting in the same conclusion. Liu and co-
workers [7] then verified the same conclusion from the quantum 
statistical physics point of view in 2000. In 1998, Zhao and Luo [8] 
explicitly stated in their book Thermotics that “the intrinsic energy of 
ideal gas is not related with volume”, concluded from the experiment 
conducted by both Gay Lussac and Joule, cannot be considered as the 
final conclusion. The authors further stated that the Joule law relied on 
the experiment performed by Rossini–Frandsen [9] in 1932. 

It is clear that the classical free expansion, Joule’s law, and the 
concept of ideal gas fell into crisis under such a situation. First, free 
expansion got into the following dilemma: if ‘the temperature varies 
in the free expansion process’ is accepted, it would then be a counter 
example to Joule’s law; If it was approved that the temperature of “ideal 
gas” in thermodynamics could change before and after free expansion, 
then it could be hard to distinguish “ideal gas” and non-deal gas because 
the free expansion system belongs to non-deal gas in the statistic 
physics when pressure P >> 0 in the classical free expansion system. If 
one insisted that the temperature remained unchanged before and after 
free expansion, namely, the temperature of “non-ideal gas” in statistical 
physics didn’t change before and after free expansion, and then it could 
not be distinguished from the “ideal gas”. Secondly, Joule’s law faces 
the following challenge: theoretically, when ideal gaseous equation 
is utilized in the composite function in molecular kinetic theory and 
mathematics, the intrinsic energy of the deal gas system is still the 
function of P and V. On the experiment basis, Joule’s law depends on 
the success of Rossini–Frandsen’s experiment after losing support from 
free expansion [9]. Washburn once revised and developed the bomb 
calorimetry based on this experiment. However, the fundamental base 
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Introduction
In the free expansion experiment, Gay-Lussac and Joule proved 

that both gas pressure and volume changed before and after the vacuum 
expansion while temperature and intrinsic energy are kept unchanged. 
Thus, Joule’s Law concluded that “the intrinsic energy of the ideal gas 
was only correlated with temperature of the system, while independent 
of its pressure and volume” [1]. Even though Joule’s free expansion 
experiment was not necessarily the most accurate, it significantly 
impacted the development of modern thermodynamics theory gaining 
unanimous recognition. Thereafter, tremendous amount of research 
was done to improve Joule law. 

Up to the late 20th century, people just began to change their 
opinions about free expansion. Klotz and Rosenberg in 1972 [2] argued 
that temperature during the free expansion process was not a definite 
value, and it restored automatically after the system rebalanced. In 
1989, Xiancai Fu and co-workers [1] described that the temperature 
remained unchanged during the free expansion process because of the 
large heat capacity of water, thus the temperature change could not 
be measured, therefore, the conclusion could be correct under the 
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for this experiment was that “the intrinsic energy and pressure of gas 
system are in a linear relationship”, namely, U (P, T) = f (T) P + g (T). 
When this linear relationship is extrapolated to P → 0, one can only say 
U → g (T). However, if thus reached the conclusion that “the intrinsic 
energy had no relationship with pressure”, it would be obviously 
contradictory with the premise that “the intrinsic energy and pressure 
of gas system are in a linear relationship”. P→0 was only a value used, 
instead of omitting the influence of pressure on intrinsic energy. Unless 
the statement “as the pressure changes, the data of each experimental 
point near P→0 forms divergent sequence around intrinsic energy 
axile” stands, the Joule law couldn’t be supported. 

The trend for the theoretical exploration in the field would certainly 
deprive the experimental base of Joule’s law. The real key here is that 
Joule’s law and the first law of thermodynamics are incompatible. The 
first law clearly determines that “the intrinsic energy is the univalent 
function of states”, while the Joule’s law determines the intrinsic 
energy of a system only relying on temperature property even under 
the circumstance of the undetermined system state. The properties 
of pressure and volume could be used to determine the state of an 
enclosed system while Joule law claimed that they have nothing to do 
with the intrinsic energy. The equation U = 3/2 PV derived by A. G. 
Guy [4] was the conclusion of statistical physical axiom, but it could 
not be used as the final argument for the thermodynamic axiom.

We reported in 2011 [10] that the internal energy of an ideal-gas 
can not only be expressed as the product of its volume and pressure but 
can also be expressed as the product of its temperature and quantity of 
gas. Therefore, the statement of “the internal energy of an ideal gas is 
independent of its pressure and volume” is an inaccurate statement. In 
2014, Stepanov [11] described the ideal gas paradox and declared that 
it was the wrong approach to express the internal energy of a simple gas 
as the only function of temperature. Instead, multivariable equations of 
state derived from composite functions must be used. In 2016, we [12] 
reported the studies on the relationship between internal energy and 
state of ideal gas in which the Continued Equality, depicted as “The 
internal energy of the ideal gas has interrelationship with each state 
function”, was derived for the first time.    

The historical contributions of Joule’s law and its contradictions 
in thermodynamics indicated that it should have both verifiability 
and falsifiability in theory [10]. In this paper, we describe the curved 
surfaces of both state and equal-intrinsic energy of ideal gas on the basis 
of the static and homogeneous states by utilizing analytic geometrical 
method and by following the first law of thermodynamics. We explored 
and determined the method to solve the problems and contradictions 
mentioned above. The continued equality was derived and further 
experimentally verified [13]. 

State curved surface of ideal gas
In thermodynamic theory system, the so-called “ideal gas” refers 

to the relationship among all the system state properties that has to be 
consistent with the laws of Boyle, Gay-Lussac, and Charles. In the 19th 
century, people merged them as the following ideal gas equation:

pV nRT=

“The ideal gas” in statistical physics is the gas formed by a group 
of constantly moving and non-potential mechanical particles. With 
the method dealing with the close independent subsystem, it can be 
obtained: NkT nRTp

V V
= =

Therefore, in the classical theory arena, studies of ideal gas equation 
meet the common requirements of the above two theory systems.

According to the extensive property of intrinsic energy, it can be 
explained that gas volume is also the essential variable to determine 
intrinsic energy. Therefore, the ideal gas equation, obtained from 
both thermodynamics and statistical physics perspectives, should 
be a function equation formed by four properties P, V, n, T. Because 
the state equation obtained is a quadratic function, thus it could be 
assumed that its standard form is a quaternary quadratic equation:

2 2 2 2
1 2 3 4 5 6

7 8 9 10 11 12 13 14 15 0
a p a V a n a T a pV a pn

a pT a Vn a VT a nT a p a V a n a T a
+ + + + + +

+ + + + + + + + + =

The ideal gas equation obtained above is the result when a5 = 1, 
a10 = -R, and all of the rest coefficients are zero. Under the condition 
of n = 0 and V = V0 , the ideal gas equation could be expressed as the 

form of Charles law:
T

T

T K p
VK
nR

=



=
, it means, in P~V~T coordinates, all the 

possible corresponding points for temperature and pressure values 
could be interconnected to a straight line, and its linear slope is T

VK
nR

=

. The closed systems with the same gas volume could have different 
slopes because of different volumes; therefore, all the straight lines may 
not coexist in the same plane. Because V could value continuously 
within the interval of (0, +∞ ), thus all P ~ V straight lines could be 
interconnected to a curved surface. Under the condition of n = 0, 
each state point determined by P, V and T would definitely be passed 

through by certain straight line determined by 
T

T

T K p
VK
nR

=



=

 and is passed 

through by only one single straight line. Thus, it can be determined 
that the state curved surface of a closed ideal gas system is a ruled 
quadric surface. Similarly, the same result can also be obtained from 

Gay Lussac law, expressed as: 
T

T

T K V
pK

nR

′=

 ′ =

. Therefore, the state surface 

has two groups of straight generatrixes (see Figure 1).

Symmetry of curved surface
The curved surface shown in Figure 1 has one symmetric plane P = 

V. The intersecting line of state curved surface and symmetric plane is: 
pV nRT

p V
=

 =
, therefore, P2-nRT = 0 or V2 - nRT  = 0.

Here is the parabola equation which gives the OA line in Figure 1. 
Moreover, it is also perpendicular to the symmetric plane and parallel 
to the plane of axis T; then, the intersecting line between p V c= − + and 
the state curved surface is:

pV nRT
p V c

=
 = − +

 , namely, 2 0V cV nRT− + − =

This is also a parabola equation which gives a line with opposite 
direction, such as Line BC in Figure 1. Therefore, the state curved 
surface of ideal gas may be a hyperbolic paraboloid. It can be verified 
as follows:

Rotating the p ~ V ~ T coordinate system 45° horizontally around 
the Axis T, the substitution equation of the coordinates is:

cos sin
sin cos

p p V
V p V

θ θ
θ θ

′ ′= −
 ′ ′= +
Substituting them into the ideal gas equation gives: 
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2 2 2 2

2 2 2 2

( cos sin )( sin cos )
cos sin cos sin cos sin

( ) cos sin (cos sin )

pV p V p V nRT
p p V p V V

p V p V nRT

θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ

′ ′ ′ ′= − + =

′ ′ ′ ′ ′ ′+ − −

′ ′ ′ ′= − + − =

Substituting 45oθ =  and 2sin 45 cos 45
2

o o= =  into above equation 
resulted in: 

2 2 2 2 2 2( ) ( )
2 2 2 2

pV p V p V nRT′ ′ ′ ′= − + − =

Arrangement resulted in: 
2 2

2p V T
nR
′ ′−

=  or 
2 2

2p V T
nR nR
′ ′
− =

This is the standard equation of hyperbolic paraboloid with a shape 
of saddle. This surface has two groups of straight generatrixes, having 
the following equations:

2p V T
nR nR

p V
nR nR

λ µ

µ λ

 ′ ′ + =  
  

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Substitute the coordinate transformation equations
cos sin
sin cos

p p V
V p V

θ θ
θ θ

′ = +
 ′ = − +

into the above equation: cos sin sin cosp V p V p Vθ θ θ θ′ ′− = + + −

= ( ) ( )cos sin sin cosp Vθ θ θ θ+ + −

= 2 2 2 2 2
2 2 2 2

p V p
   

+ + − =      
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cos sin sin cosp V p V p Vθ θ θ θ′ ′+ = + − +

= ( ) ( )cos sin sin cosp Vθ θ θ θ− + +

=
2 2 2 2 2

2 2 2 2
p V V
   

− + + =      
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2 22 ,
2

p V V VT T
nR nR nR

λλ λ µ
µ

′ ′+ ∴ = = = 
 

Make: 2
2TK

nR
λ

µ
=  then: TT K V=

from p V
nR nR

µ λ
′ ′ − = 

 
 obtain: 2p V p

nR nR
λ
µ

′ ′−
= =

so 
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λ
µ
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T

T

T K V
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This result is exactly the form of Gay Lussac’s law and also the 
intersecting line of isobaric plane and state curved surface.

from 2p V T
nR nR

λ µ
′ ′ ′ ′− = 

 
 obtain, 2 2p T

nR
λ µ′ ′=

make: 2
2TK

nR
λ
µ
′

′ =
′
 then TT K p′=

from  p V
nR nR

µ λ
′ ′ ′ ′+ = 

 
 obtain:   2V

nR
λ
µ
′
=
′

2 2 2
2 2T

V VK
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λ
µ
′

′ = = =
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     ∴  
T

T

T K p
VK
nR

′=

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This is the form of Charles’ law, and also the intersection equation 
of isosteric plane and state curved surface.

The intersection standard equation of state curved surface and 

isothermal plane can be expressed as: 
2 2

0 0

1
2 2

p V
nRT nRT
′ ′

− =  ( 0T  is a constant)

then: 2 2 2 2( cos sin ) ( sin cos ) 2p V p V p V nRTθ θ θ θ′ ′− = + − − =

Figure 1. State curved surface of the sealed ideal gas system in P, V, T three-dimensional 
space

Figure 2. State curved surface and equal-intrinsic energy of enclosed ideal gases in P, V, T 
three-dimensional space

Figure 3. Curved surface of both state and equal internal energy for ideal gases with open 
and constant volume in P, V, T three-dimensional space
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= 2 2 2 2 2 2 2 2cos 2 cos sin sin cos 2 cos sin sinp pV V V pV pθ θ θ θ θ θ θ θ+ + − + −  = 	

         2 24 2
2 2

pV pV=

∴  
02 2pV nRT= , when 0T  is a constant, it can be obtained: 

0pV nRT c= =

This is the mathematical form of Boyle law and also the intersection 
equation of isothermal plane and state curved surface. 

Influence of gas content n on state curved surface
In P~V~T coordinate system, the role of the fourth variable n is, 

when the product of V  and V is fixed, the greater the volume of gas 
content n , the lower the corresponding temperature. The position of 
the state curved surface is also relatively low. Therefore, the geometry 
space expressed by ideal gas equation is a family of curved surfaces 
which are overlapping and mutually intersecting with axes P and V.

Coverage of curved surface
According to the physical significance of system property, domain 

of definition of p ,V , n ,T can continuously value within the interval 
(0, )+∞ . So the family of curved surfaces should fill the first octant of 
three-dimensional space.

Expression for intrinsic energy of the ideal gas with 
property coordinates

According to the point of view that “intrinsic energy is the univalent 
function of state”, when the property coordinate system of ideal gas 
determines the state of the system, it also inevitably determines the 
intrinsic energy of the system. For general cases, when the gas volume 
is variable, the system state requires at least three properties to be 
determined. Different combinations correspond to four 3-dimensional 
coordinates:

1 2 3 4( , , ) ( , , ) ( , , ) ( , , )U f p V T f p V n f p n T f n V T= = = =

The coordinate system ~ ~p V T  is considered as an example for 
further analysis (see below).

Derivation from the coordinate system
~ ~p V T : intrinsic energy can be expressed as: 

1( , , )U f p V T=

It can be differentiated as: 
, ,, p T p VV T

U U UdU dp dV dT
p V T

 ∂ ∂ ∂   = + +     ∂ ∂ ∂    

Herein, 
,V T

U
p

 ∂
 ∂ 

requires 0dV = and 0dT = . This is the rate of 

intrinsic energy change with pressure in the open isosteric system with 
constant temperature. The open isosteric system means the artificially 
specified space of a research system. The specified space is considered 
as the research system, and the outside of this space is the environment. 
The exchange of substance and energy can be realized between the 
system and environment. With the consideration of the influence of 
“heat convection” in the open system, the amount of heat exchange of 
an open system should be the function of gas amount and temperature 
of the system, according to the definition of heat capacity:

( )V V V VQ C d nT C ndT C Tdnδ = = +  

Because 0dV = , 0W PdVδ = =
when 0dT = , P PQ C Tdnδ =  = V VC CRTdn Vdp

R R
=

           

according to the first law, it can be obtained: dU = VQδ Wδ− =
VC Vdp

R



so      
,V T

U
p

 ∂
 ∂ 

= VC V
R



,p T

U
V
∂ 

 ∂ 
requires 0dp = , 0dT = . That is the changing rate of volume 

and intrinsic energy for the open system when the pressure and 
temperature keep constant.

because 0dT = , P PQ C Tdnδ =  VC Tdn RTdn= +

= V VC CRTdn RTdn pdV pdV
R R

+ = +
 

and    W pdVδ =      ∴      dU = PQδ Wδ− = VC pdV pdV
R

+


pdV−

namely    dU = VC pdV
R



so        
,p T

U
V
∂ 

 ∂ 
=

V

V

C pdV CR p
dV R

=





,p V

U
T

∂ 
 ∂ 

requires 0dp = , 0dV = . Namely, the rate of intrinsic 

energy of ideal gas changes with temperature when pressure and 
volume remain constant in an open system.

Because 0dV = , make 0W pdVδ = =

and ( ) ( ) ( )C CQ Cd nT d nRT d pV
R R

δ = = =
 



by the first law of thermodynamics it can be determined as: dU =
Qδ Wδ− = C CpdV Vdp

R R
+

 

When 0dp = , 0dV = , it can be obtained dU = Qδ Wδ− =0

So   
,p V

U
T

∂ 
 ∂ 

= 0

In the coordinate system ~ ~p V T , with 1( , , )U f p V T= or its 
differential:

, ,, p T p VV T

U U UdU dp dV dT
p V T

 ∂ ∂ ∂   = + +     ∂ ∂ ∂    

The function of the intrinsic energy can be expressed as: dU =
V VC CpdV Vdp

R R
+

 

= ( )VC d pV
R



The above derivation can be analyzed as the following:

dU = ( )VC d pV
R

%
 illustrates that the intrinsic energy of the system can 

be determined by the product of pressure and volume in the coordinate 
system ~ ~p V T . The intrinsic energy of the system varies with the 
rectangular planar area within the plane ~p V  surrounded by the four 
straight lines axis P and V as well as 0p p=  and 0V V= .

When the system state is determined, there is only one intrinsic 
energy value. However, after the intrinsic energy is determined, there 
may be many corresponding system states. All corresponding points 
for the p and V values of the possible states within the plane ~p V  are 
interconnected into an inverse curve: pV c= .

In coordinate system ~ ~p V T , with the continuous change of 
gas volume, this curve can be developed into a curved surface parallel 
to the axis T. This is the equal-intrinsic energy surface for 0U U= . The 
surface generatrix is 0

0

p p
V V
=

 =
, namely, the geometric significance of 

,p V

U
T

∂ 
 ∂  = 0. The intersecting line of the equal-intrinsic energy surface 
and the state curved surface 0n n=  is 0

0

pV n RT
pV kU

=
 =

obtained: 0
0

0

kUT T
n R

= =  (constant)
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in the above equation, 0U  stands for the equal-intrinsic energy 
surface, 0n is the state curved surface of certain enclosed system, and 

0T  is the isothermal surface. According to current thermodynamic 
method, if the system always remains as the uniform state during the 
process, when the intrinsic energy and temperature keep constant in 
the free expansion process, the pressure and volume of this system can 
only change along with the common intersecting line of “the equal-
intrinsic energy surface”, “isothermal surface”, and “the state surface 
of enclosed system”.

Derivation of expression forms in other coordinate sys-
tems 

By utilizing the same method mentioned above to analyze the 
coordinate system ~ ~p V n , similar result can also be obtained:

In the coordinates ~ ~p V n , equal-intrinsic energy can be 
expressed as: 2 ( , , )U f p V n= . It can be differentiated as:

, ,p n p VV n

U U UdU dp dV dn
p V n

 ∂ ∂ ∂   = + +     ∂ ∂ ∂    

partial differential equation can be derived: 

,V n

U
p

 ∂
 ∂ 

= VC V
R



, 
,p n

U
V
∂ 

 ∂ 
= VC p

R



, 
,p V

U
n

∂ 
 ∂ 

= 0 

Substitution gives: dU = ( )VC d pV
R

%

The result is the same as that obtained from the coordinate system
~ ~p V T . The geometrical pattern and analyzing methods used are all 

the same as those in the coordinate system ~ ~p V T except the axis T of 
the coordinate system is changed into axis n.

In the coordinate system ~ ~p n T , intrinsic energy can be 
expressed as 3 ( , , )U f p n T= , and it is differentiated as:

, ., p T p nn T

U U UdU dp dn dT
p n T

 ∂ ∂ ∂   = + +     ∂ ∂ ∂    

the partial differential equation can be derived as:

,n T

U
p

 ∂
 ∂ 

= 0, 
,p T

U
n

∂ 
 ∂ 

= VC T , 
.p n

U
T

∂ 
 ∂ 

= VnC

So:

, ., p T p nn T

U U UdU dp dn dT
p n T

 ∂ ∂ ∂   = + +     ∂ ∂ ∂    
 = 0 + VC Tdn + VnC dT

Arrangement results in: ( )VdU C d nT= 

( )VdU C d nT=   means that the system intrinsic energy can be 
determined by the product of gas volume and temperature in the 
coordinate system ~ ~p n T . The intrinsic energy value of the system is 
proportional to the area of the rectangle formed by axis n, axis T, 0n n=
, and 0T T=  four straight lines in the n ~ T plane.

In coordinate system ~ ~n V T , intrinsic energy can be expressed 
as 4 ( , , )U f n V T= . It is differentiated as:

, , ,V T n T n V

U U UdU dn dV dT
n V T

∂ ∂ ∂     = + +     ∂ ∂ ∂     

the partial differential equation can be derived as:

,V T

U
n

∂ 
 ∂ 

= VC T ,    
,n T

U
V
∂ 

 ∂ 
= 0,    

,n V

U
T

∂ 
 ∂ 

= VnC

, , ,V T n T n V

U U UdU dn dV dT
n V T

∂ ∂ ∂     = + +     ∂ ∂ ∂     
= VC Tdn +0+ VnC dT

Arrangement results in: dU = ( )VC d nT

This result is consistent with that of coordinate system ~ ~p n T , 
and the corresponding graphics and analysis method are also similar.

Comprehensive results 
Combination of all expressions for the system intrinsic energy 

of an ideal gas within the four coordinate systems mentioned above 
results in the following continued equality:  

( )V
V

CdU d pV nC dT
R

= =




integration gives: 0 0 0 0 0
V V

V V
C CU U pV p V nC T n C T
R R

− = − = −
 

 

Any selected standard system state can be expressed as:

0 0 0 0 0
V

V
CU p V n C T
R

= =




So, the function relationship between the intrinsic energy and state 
of the system can be expressed as: V

V
CU pV nC T
R

= =




This equation can be utilized to determine the intrinsic energy 
of any ideal gas system when the common reference standard was 
set based on the base point, such as 0

lim 0
p

T
δ →

= K, of the coordination 
system.        

Further reviewing and understanding free expansion 
and Joule Law 
Analysis of verifiability and falsifiability of Joule Law 

The verifiability of Joule’s law is that it determines a measure 
method of system intrinsic energy, while its falsifiability is its exclusion 
for other measure methods for intrinsic energy. Using the twelve 
partial differential equations for the intrinsic energy measurement 
derived by the analytic geometrical method described above, one can 
determine the uniform measurement of the intrinsic energy for any 
system, including different quality system. Through careful one-by-
one comparison, one can conclude that Joule law statements “intrinsic 
energy only has relationship with system temperature” includes the 
following four partial differential equations in the closed system: 

,n T

U
V
∂ 

 ∂ 
= 0; 

,n T

U
p

 ∂
 ∂ 

= 0; 
.p n

U
T

∂ 
 ∂ 

= VnC ; 
,n V

U
T

∂ 
 ∂ 

= VnC

However, considering Joule’s statement “system intrinsic energy has 
nothing to do with pressure and volume”, along with the relationship 
between intrinsic energy and gas volume, Joule’s law excludes the rest 
of eight partial differential results as shown below:

, , ,,

, , , ,

; 0; ; ;

; 0; ; ;

V V
V

p V p T p TV T

V V
V

V T p V p n V n

C CU U U UV p C T
p R T V R n

C CU U U UC T p V
n n V R p R

 ∂ ∂ ∂ ∂     = = = =       ∂ ∂ ∂ ∂      

 ∂ ∂ ∂ ∂     = = = =      ∂ ∂ ∂ ∂       

 



 



Because Joule law’s statement includes four of these equations, the 
difference of intrinsic energy in closed system before and after the state 
change can be determined based on Joule law. The exclusion of the 
other eight equations by Joule’s law leads to its incompatibility with 
the first law of thermodynamics. In all the twelve partial differentials, 
four partial differentials indicate Joule’s law’s verifiability, while eight 
partial differentials show its falsifiability, which also embodies the 
complementation of verifiability and falsifiability.

Free expansion experiment 

The origin of the dilemma, as to whether the temperature changes 
before and after free expansion, is the difference between “ideal gas 
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concept” in the definition of “mathematical limit” in statistical physics 
and the definition of “measuring distinguishability” in thermodynamics. 
Joule’s law gives the “privilege” that ideal gas temperature property is 
the only related factor with intrinsic energy, which dictates whether 
the temperature changes before and after free expansion becoming the 
only factor to define an ideal gas. In analyzing this core dilemma, the 
continued equality clearly proved the verifiability and falsifiability of 
Joule’s law; free expansion was no longer the standard to distinguish 
the ideal and non-ideal gasses. The corresponding meaning then 
naturally turned into “when the change of molecular interactions is 
small enough to be ignored before and after the vacuum expansion, the 
temperature change can also be ignored”. Therefore, both challenges, 
the dilemma of free expansion and the relationship between intrinsic 
energy of ideal gas with temperature, are easily resolved. “Ideal gas” 
then naturally regressed as a theoretical model.

Connection of continued equality with the current theory 

The continued equality obtained above by using analytic geometrical 
method based on the first law of thermodynamics can also be derived 
through thermodynamic method and statistical physics method, and it 
covers the classical gas three laws, polytropic process, and Joule’s law as 
well as all the basic theories of ideal gas in statistical physics. In addition, 
the derivation of Joule’s law by the second law of thermodynamics is 
essentially the results by introducing the inherent property of intrinsic 

energy 
,n T

U
V
∂ 

 ∂ 
= 0,

,n T

U
p

 ∂
 ∂ 

= 0 into Maxwell equation, and it has no 

direct relationship with the second law. Based on its containment of 
thermodynamics content and reasonable connection, the continued 
equality described herein is smoothly incorporated into the current 
theory system.

Conclusions
Ideal gas state curved surface, expressed by PV = nRT, is a ruled 

quadric surface in P ~ V ~ T three-dimensional space, and a hyperbolic 
paraboloid in the shape of saddle after horizontally rotating 45°. The 

curved surface equation of a state is 
2 2

2p V T
nR
′ ′−

= . The equal intrinsic 

energy surface of ideal gas in three-dimensional property coordinates 
is perpendicular to P ~ V plane or the inverse surface of the n ~ T 

plane. Curved surface equation of intrinsic energy is V
V

CU pV nC T
R

= =


 , 

known as continued equality which includes all the basic theories of the 
ideal gas. Among the twelve partial differential equations derived from 
continued equality, Joule’s law only includes four of them, but excludes 
the rest eight, which indicates that Joule’s law has both verifiability 
and falsifiability. The detail experimental verification on the continued 
equality will be described in the subsequent article [13].
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